Evidence supporting a role for programmed cell death in focal cerebral ischemia in rats.

نویسندگان

  • M D Linnik
  • R H Zobrist
  • M D Hatfield
چکیده

BACKGROUND AND PURPOSE Cells die by one of two mechanisms, necrosis or programmed cell death. Necrosis has been implicated in stroke and occurs when the cytoplasmic membrane is compromised. Programmed cell death requires protein synthesis and often involves endonucleolytic cleavage of the cellular DNA. We assessed the potential contribution of programmed cell death to ischemia-induced neuronal death. METHODS Cycloheximide (protein synthesis inhibitor; 1 mg/kg per 24 hours) or vehicle (1 mL/kg per 24 hours) was continuously infused into the right cerebral ventricle of spontaneously hypertensive rats. Neocortical focal ischemia was produced by tandem occlusion of the right common carotid artery and the ipsilateral middle cerebral artery. After 24 hours the brain was stained with 2% 2,3,5-triphenyltetrazolium and the ischemic zone quantitated. Protein synthesis was determined by [3H]methionine incorporation into acid-precipitated protein. DNA integrity was determined in isolated DNA by gel electrophoresis and in whole cells by flow cytometry. RESULTS Continuous cycloheximide infusion caused approximately 70% reduction in cortical protein synthesis. Cycloheximide also reduced the size of the infarction produced by focal cerebral ischemia when compared with controls (ischemic brain volume, 147.5 +/- 25.9 and 188.7 +/- 16.8 mm3 for cycloheximide and saline, respectively; P < .01), suggesting that protein synthesis may contribute to cell death. Purified DNA from the ischemic zone showed evidence of endonucleolytic degradation when fractionated by gel electrophoresis. Flow cytometric analysis demonstrated increased propidium iodide fluorescence in intact cells isolated from ischemic cortex, indicating an increased accessibility of degraded DNA to the intercalating dye. CONCLUSIONS New protein synthesis appears to contribute to ischemic cell death in which endonucleolytic DNA degradation is apparent. These observations implicate programmed cell death in ischemic injury and may open unique therapeutic approaches for the preservation of neurons in stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Allograft Transplantation of Sertoli Cell on Expression of NF-кB, Bax Proteins, and Ischemic Tolerance in Rats with Focal Cerebral Ischemia

One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cel...

متن کامل

Research Paper: Optimization of Transient Focal Cerebral Ischemia Model by Middle Cerebral Artery Occlusion

Introduction: Cerebral ischemia is one of the most common causes of death in human populations in the industrial communities. The need for animal models is inevitable to study the pathophysiology and treatment of cerebral ischemia in human. The current study aimed at evaluating the strengths and weaknesses of different techniques used to create ischemia in previous studies and optimizing the tr...

متن کامل

The Effect of Allograft Transplantation of Sertoli Cell on Expression of NF-кB, Bax Proteins, and Ischemic Tolerance in Rats with Focal Cerebral Ischemia

One of the newest methods to reduce cerebral ischemia damages is cell therapy. The aim of this study is to evaluate the effect of Sertoli cell transplantation on ischemia-induced injuries in animal models of stroke. Rats were divided into four groups: transplant+ischemia, ischemia, sham, and control. Sertoli cells were separated from the other testis of rats and cultured. Unilateral Sertoli cel...

متن کامل

Neuroprotective Effects of Exercise on Brain Edema and Neurological Movement Disorders Following the Cerebral Ischemia and Reperfusion in Rats

Introduction: Cerebral ischemia and reperfusion causes physiological and biochemical changes in the neuronal cells that will eventually lead to cell damage. Evidence indicates that exercise reduces the ischemia and reperfusion-induced brain damages in animal models of stroke. In the present study, the effect of exercise preconditioning on brain edema and neurological movement disorders followin...

متن کامل

Role for Programmed Cell Death in Focal Cerebral Ischemia in Rats

Background and Purpose: Cells die by one of two mechanisms, necrosis or programmed cell death. Necrosis has been implicated in stroke and occurs when the cytoplasmic membrane is compromised. Programmed cell death requires protein synthesis and often involves endonucleolytic cleavage of the cellular DNA. We assessed the potential contribution of programmed cell death to ischemia-induced neuronal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 24 12  شماره 

صفحات  -

تاریخ انتشار 1993